Revisiting the inner and outer bounds for the two receiver broadcast channel

Chandra Nair

The Chinese University of Hong Kong (CUHK)

Mar 9, 2010

Outline of talk

- An observation and a thought experiment
- Existing bounds
- A comparison between them
- A different way of thinking
- What is missing...
- More examples

Some preliminaries

Recall: Superposition coding can be used to <u>achieve</u> the union of rate pairs (R_1, R_2) satisfying

$$R_1 \le I(U; Y_1)$$

 $R_1 + R_2 \le I(U; Y_1) + I(X; Y_2|U)$
 $R_1 + R_2 \le I(X; Y_2)$

over all p(u, x).

Korner-Marton and El Gamal established that the union of rate pairs (R_1, R_2) satisfying

$$R_1 \leq I(U; Y_1)$$

 $R_1 + R_2 \leq I(U; Y_1) + I(X; Y_2|U)$
 $R_2 \leq I(X; Y_2)$

over all p(u, x) forms an <u>outer bound</u> to the capacity region.

CN (CUHK) Broadcast Channel Mar 9, 2010 3/32

A thought experiment

Observation 1: The above inner and outer bounds seem great for a degraded scenario (where Y_1 is the weaker receiver).

Observation 2: All the capacity regions are established by showing that these two regions coincide.

Question: Are the two regions (inner and outer bounds) the same <u>or</u> are the different?

A thought experiment

Observation 1: The above inner and outer bounds seem great for a degraded scenario (where Y_1 is the weaker receiver).

Observation 2: All the capacity regions are established by showing that these two regions coincide.

Question: Are the two regions (inner and outer bounds) the same <u>or</u> are the different?

Using Observation 1, a natural <u>antipodal</u> setting seems to be when there is no degradedness in the picture

Non-degradable BC

A non-degradable broadcast channel is one where there does not exist a non-trivial decomposition of the form

$$X \to \tilde{X} \to \, Y_1, \, Y_2$$

lf

- \bullet $P: X \mapsto Y_1$
- $Q: X \mapsto Y_2$

then there does not exists M, a non-trivial $|X| \times |X|$ stochastic matrix such that

•
$$P = P_1 \times M$$
; $Q = Q_1 \times M$

Non-degradable BC

A non-degradable broadcast channel is one where there does not exist a non-trivial decomposition of the form

$$X \to \tilde{X} \to \, Y_1, \, Y_2$$

lf

- \bullet $P: X \mapsto Y_1$
- $Q: X \mapsto Y_2$

then there does not exists M, a non-trivial $|X| \times |X|$ stochastic matrix such that

• $P = P_1 \times M$; $Q = Q_1 \times M$

The simplest example of a non-degradable broadcast channel is the BSSC

Non-degradable BC

A non-degradable broadcast channel is one where there does not exist a non-trivial decomposition of the form

$$X \to \tilde{X} \to \, Y_1, \, Y_2$$

lf

- \bullet $P: X \mapsto Y_1$
- $Q: X \mapsto Y_2$

then there does not exists M, a non-trivial $|X| \times |X|$ stochastic matrix such that

•
$$P = P_1 \times M$$
; $Q = Q_1 \times M$

The simplest example of a non-degradable broadcast channel is the BSSC

Thus intuitively, BSSC is a perfect channel to compare the bounds

The binary skew-symmetric broadcast channel (BSSC)

Figure: Binary Skew Symmetric Channel

Outline of talk

- An observation and a thought experiment
- Existing bounds
- A comparison between them
- A different way of thinking
- What is missing...
- More examples

An achievable region (Marton '79)

Most of this talk, assume $R_0 = 0$ (no common message)

Recall that the following rates are achievable

$$R_1 \le I(U, W; Y_1)$$

 $R_2 \le I(V, W; Y_2)$
 $R_1 + R_2 \le \min\{I(W; Y_1), I(W; Y_2)\} + I(U; Y_1|W)$
 $+ I(V; Y_2|W) - I(U; V|W)$

8/32

An achievable region (Marton '79)

Most of this talk, assume $R_0 = 0$ (no common message)

Recall that the following rates are achievable

$$R_1 \le I(U, W; Y_1)$$

 $R_2 \le I(V, W; Y_2)$
 $R_1 + R_2 \le \min\{I(W; Y_1), I(W; Y_2)\} + I(U; Y_1|W)$
 $+ I(V; Y_2|W) - I(U; V|W)$

This is the best achievable region known to-date

- Not even a special carefully constructed channel where one can beat this
- Obviously, no proof of optimality

Outer bound: El Gamal (Asilomar '76, IT '79)

Paper: Capacity of a class of broadcast channels (more capable)

The union of rate pairs (R_1, R_2) satisfying

$$R_1 \le I(U; Y_1)$$

$$R_2 \le I(V; Y_2)$$

$$R_1 + R_2 \le I(U; Y_1) + I(X; Y_2|U)$$

$$R_1 + R_2 \le I(V; Y_2) + I(X; Y_1|V)$$

over all p(u, v, x) constitutes an outer bound.

Mar 9, 2010

Outer bound: El Gamal (Asilomar '76, IT '79)

Paper: Capacity of a class of broadcast channels (more capable)

The union of rate pairs (R_1, R_2) satisfying

$$R_1 \le I(U; Y_1)$$

 $R_2 \le I(V; Y_2)$
 $R_1 + R_2 \le I(U; Y_1) + I(X; Y_2|U)$
 $R_1 + R_2 \le I(V; Y_2) + I(X; Y_1|V)$

over all p(u, v, x) constitutes an outer bound.

Remark: Because this bound was not explicitly stated, this was not well-known (registered)

Call this bound the UV-OB.

Körner-Márton (IT '79)

Paper: An achievable rate region for 2-receiver discrete memoryless broadcast channels (Márton)

The union of rate pairs (R_1, R_2) satisfying

$$R_1 \le I(X; Y_1)$$

 $R_2 \le I(V; Y_2)$
 $R_1 + R_2 \le I(V; Y_2) + I(X; Y_1|V)$

over all p(v, x) constitutes an outer bound.

Körner-Márton (IT '79)

Paper: An achievable rate region for 2-receiver discrete memoryless broadcast channels (Márton)

The union of rate pairs (R_1, R_2) satisfying

$$R_1 \le I(X; Y_1)$$

 $R_2 \le I(V; Y_2)$
 $R_1 + R_2 \le I(V; Y_2) + I(X; Y_1|V)$

over all p(v, x) constitutes an outer bound.

Remark: This was used in establishing the capacity of the semi-deterministic broadcast channel

Körner-Márton outer bound

Let \mathcal{R}_a be the union of rate pairs (R_1, R_2) satisfying

$$R_1 \le I(X; Y_1)$$

$$R_2 \le I(V; Y_2)$$

$$R_1 + R_2 \le I(V; Y_2) + I(X; Y_1|V)$$

over all p(v, x).

Let \mathcal{R}_b be the union of rate pairs (R_1, R_2) satisfying

$$\begin{split} R_1 &\leq \textit{I}(\textit{U};\, Y_1) \\ R_2 &\leq \textit{I}(\textit{X};\, Y_2) \\ R_1 + R_2 &\leq \textit{I}(\textit{U};\, Y_1) + \textit{I}(\textit{X};\, Y_2 | \textit{U}) \end{split}$$

over all p(v, x).

Körner-Márton outer bound

Let \mathcal{R}_a be the union of rate pairs (R_1, R_2) satisfying

$$R_1 \le I(X; Y_1)$$

$$R_2 \le I(V; Y_2)$$

$$R_1 + R_2 \le I(V; Y_2) + I(X; Y_1|V)$$

over all p(v, x).

Let \mathcal{R}_b be the union of rate pairs (R_1, R_2) satisfying

$$R_1 \le I(U; Y_1)$$

 $R_2 \le I(X; Y_2)$
 $R_1 + R_2 \le I(U; Y_1) + I(X; Y_2|U)$

over all p(v, x).

The region $\mathcal{R}_a \cap \mathcal{R}_b$ became known as the Körner-Márton outer bound.

Remarks

The following comparisons are immediate:

- UV-OB ⊂ KM-OB
- UV-OB ⊂ Sato's outer bound

Remarks

The following comparisons are immediate:

- UV-OB ⊂ KM-OB
- UV-OB ⊂ Sato's outer bound

Further KM-OB matches the capacity region in $\underline{\text{all special cases}}$ where capacity was established.

Nair-El Gamal '06

The union of rate pairs (R_1, R_2) satisfying

$$R_1 \leq I(U, W; Y_1)$$

$$R_2 \leq I(V, W; Y_2)$$

$$R_1 + R_2 \leq I(U, W; Y_1) + I(V; Y_2 | U, W)$$

$$R_1 + R_2 \leq I(V, W; Y_2) + I(U; Y_1 | V, W)$$

over all p(u)p(v)p(w,x|u,v) constitutes an outer bound.

Nair-El Gamal '06

The union of rate pairs (R_1, R_2) satisfying

$$\begin{aligned} R_1 &\leq I(U,W;Y_1) \\ R_2 &\leq I(V,W;Y_2) \\ R_1 + R_2 &\leq I(U,W;Y_1) + I(V;Y_2|U,W) \\ R_1 + R_2 &\leq I(V,W;Y_2) + I(U;Y_1|V,W) \end{aligned}$$

over all p(u)p(v)p(w,x|u,v) constitutes an outer bound.

Also showed that

- this bound \subseteq UV-OB \subset KM-OB
- BSSC: UV-OB ⊂ KM-OB (Surprise (☺))

Nair-El Gamal '06

The union of rate pairs (R_1, R_2) satisfying

$$\begin{split} R_1 &\leq \mathit{I}(U, W; \, Y_1) \\ R_2 &\leq \mathit{I}(V, W; \, Y_2) \\ R_1 &+ R_2 \leq \mathit{I}(U, W; \, Y_1) + \mathit{I}(V; \, Y_2 | U, W) \\ R_1 &+ R_2 \leq \mathit{I}(V, W; \, Y_2) + \mathit{I}(U; \, Y_1 | V, W) \end{split}$$

over all p(u)p(v)p(w,x|u,v) constitutes an outer bound.

Also showed that

- this bound \subseteq UV-OB \subset KM-OB
- BSSC: UV-OB ⊂ KM-OB (Surprise (☺))

However Nair-Wang ('08) showed that the above bound \equiv UV-OB

Comparing inner and outer bounds

- KM-OB = Marton Inner Bound (MIB) in <u>all special cases</u> where capacity was established.
- UV-OB ⊂ KM-OB
 - This implies that KM-OB ≠ UV-OB

Comparing inner and outer bounds

- KM-OB = Marton Inner Bound (MIB) in <u>all special cases</u> where capacity was established.
- UV-OB ⊂ KM-OB
 - This implies that KM-OB ≠ UV-OB
- Is it true that UV OB = MIB?

To, answer this we again look at the BSSC

BSSC: Comparing the bounds

Conjecture: [N-Wang '08] For all $(U, V) \rightarrow X \rightarrow (Y_1, Y_2)$

$$I(U; Y_1) + I(V; Y_2) - I(U; V) \le \max\{I(X; Y_1), I(X; Y_2)\}$$

If the conjecture is true

- Maximum $R_1 + R_2$ achievable by Märton's strategy is 0.3616...
- Maximum $R_1 + R_2$ contained in the outer bound is 0.3725.. (N-EG '07)
- Thus inner and outer bound regions differ (!)

15/32

BSSC: Comparing the bounds

Conjecture: [N-Wang '08] For all $(U, V) \rightarrow X \rightarrow (Y_1, Y_2)$

$$I(U; Y_1) + I(V; Y_2) - I(U; V) \le \max\{I(X; Y_1), I(X; Y_2)\}$$

If the conjecture is true

- Maximum $R_1 + R_2$ achievable by Märton's strategy is 0.3616...
- Maximum $R_1 + R_2$ contained in the outer bound is 0.3725.. (N-EG '07)
- Thus inner and outer bound regions differ (!)

The conjecture is true when $P(X = 0) \in [0, \frac{1}{5}] \cup [\frac{4}{5}, 1]$

Recall: No cardinality bounds on auxiliary random variables

BSSC: Comparing the bounds

Conjecture: [N-Wang '08] For all $(U, V) \rightarrow X \rightarrow (Y_1, Y_2)$

$$I(U; Y_1) + I(V; Y_2) - I(U; V) \le \max\{I(X; Y_1), I(X; Y_2)\}$$

If the conjecture is true

- Maximum $R_1 + R_2$ achievable by Märton's strategy is 0.3616...
- Maximum $R_1 + R_2$ contained in the outer bound is 0.3725.. (N-EG '07)
- Thus inner and outer bound regions differ (!)

The conjecture is true when $P(X = 0) \in [0, \frac{1}{5}] \cup [\frac{4}{5}, 1]$

Recall: No cardinality bounds on auxiliary random variables

[Gohari-Anantharam '09]

- Proved: sufficient to consider $|\mathcal{U}| \leq |\mathcal{X}|, |\mathcal{V}| \leq |\mathcal{X}|, X = f(U, V)$ to establish conjecture
- Proved: inner and outer bounds differ for BSSC

CN (CUHK) Broadcast Channel Mar 9, 2010

15/32

Sum-rate bounds for BSSC

Extending the <u>perturbation method</u> [Jog-Nair '09] established the conjecture, i.e.

For all
$$p(u, v, x)$$
, s/t $(U, V) \to X \to (Y_1, Y_2)$

$$I(U; Y_1) + I(V; Y_2) - I(U; V) \le \max\{I(X; Y_1), I(X; Y_2)\}$$

This implies that sum-rate bounds of BSSC are:

- Marton's inner bound: 0.3616...
- UV-OB: 0.37255...
- KM-OB: 0.3743...

Sum-rate bounds for BSSC

Extending the <u>perturbation method</u> [Jog-Nair '09] established the conjecture, i.e.

For all
$$p(u, v, x)$$
, s/t $(U, V) \to X \to (Y_1, Y_2)$

$$I(U; Y_1) + I(V; Y_2) - I(U; V) \le \max\{I(X; Y_1), I(X; Y_2)\}$$

This implies that sum-rate bounds of BSSC are:

- Marton's inner bound: 0.3616...
- UV-OB: 0.37255...
- KM-OB: 0.3743...

Aside: Generalizing the arguments of [Jog-Nair '09], it is known that for all $p(u, v, x, y_1, y_2)$, s/t $(U, V) \rightarrow X \rightarrow (Y_1, Y_2)$

$$I(U; Y_1) + I(V; Y_2) - I(U; V) \le \max\{I(X; Y_1), I(X; Y_2)\}$$

as long as |X| = 2

Open question

What is the optimal sum-rate of BSSC.

Answering this will determine whether:

Which bound/s are loose

Possibly require new ideas

Other bounds

- Liang, Liang-Kramer had concurrently developed similar outer bounds
 - Not known if they were better than existing bounds (e.g., KM-OB)
- Liang, Kramer, Shamai developed the <u>New-Jersey outer bound</u> ('08)
- Nair developed another outer bound ('08). <u>No-sum-rate outer</u> bound

The following relations were established:

- No sum-rate outer bound ⊆ New-Jersey outer bound
- $\bullet \ \, \text{New-Jersey outer bound} \subseteq \Big(\ \, \text{outer bound (Nair-El Gamal)} \cap \\ \text{outer-bound(Liang, Liang-Kramer)} \, \Big)$

Remark: Equivalences or strict inclusions are not established

CN (CUHK) Broadcast Channel Mar 9, 2010 18 / 32

New-Jersey outer bound (LKS '08)

The union of rate triples (R_0, R_1, R_2) satisfying

$$\begin{split} R_0 &\leq \min\{I(T;Y|W_1),I(T;Z|W_2)\}\\ R_1 &\leq I(U;Y|W_1)\\ R_2 &\leq I(V;Z|W_2)\\ R_0 + R_1 &\leq I(T,U;Y|W_1)\\ R_0 + R_1 &\leq I(U;Y|T,W_1,W_2) + I(T,W_1;Z|W_2)\\ R_0 + R_2 &\leq I(T,V;Z|W_2)\\ R_0 + R_2 &\leq I(V;Z|T,W_1,W_2) + I(T,W_2;Y|W_1)\\ R_0 + R_1 + R_2 &\leq I(U;Y|T,V,W_1,W_2) + I(T,V,W_1;Z|W_2)\\ R_0 + R_1 + R_2 &\leq I(V;Z|T,U,W_1,W_2) + I(T,U,W_2;Y|W_1)\\ R_0 + R_1 + R_2 &\leq I(U;Y|T,V,W_1,W_2) + I(T,U,W_2;Y) + I(V;Z|T,W_1,W_2)\\ R_0 + R_1 + R_2 &\leq I(V;Z|T,U,W_1,W_2) + I(T,W_1,W_2;Y) + I(V;Z|T,W_1,W_2)\\ R_0 + R_1 + R_2 &\leq I(V;Z|T,U,W_1,W_2) + I(T,W_1,W_2;Z) + I(U;Y|T,W_1,W_2)\\ \end{split}$$

for some $p(u)p(v)p(t)p(w_1, w_2|u, v, t)p(x|u, v, t, w_1, w_2)p(y, z|x)$ constitutes an outer bound.

An equivalent evaluatable region

The union of rate triples (R_0, R_1, R_2) satisfying

$$\begin{split} R_0 &\leq \min\{I(W;Y), I(W;Z)\} \\ R_0 + R_1 &\leq I(U;Y|W) + \min\{I(W;Y), I(W;Z)\} \\ R_0 + R_2 &\leq I(V;Z|W) + \min\{I(W;Y), I(W;Z)\} \\ R_0 + R_1 + R_2 &\leq \min\{I(W;Y), I(W;Z)\} + I(U;Y|W) + I(X;Z|U,W) \\ R_0 + R_1 + R_2 &\leq \min\{I(W;Y), I(W;Z)\} + I(V;Z|W) + I(X;Y|V,W) \end{split}$$

for some p(u, v, w)p(y, z|x) is <u>equivalent</u> to the NJ-outer bound.

Proof idea: same as Nair-Wang ('08)

- Suffices to consider $|W| \le |X| + 7$; $|U|, |V| \le |X| + 2$
- If one is interested in sumrate
 - suffices to consider $|U|, |V| \le |X|$; $W = \emptyset$.
- When $R_0 = 0$ this region is \equiv UV-OB

CN (CUHK) Broadcast Channel Mar 9, 2010 20 / 32

Synopsis

Thus when $R_0 = 0$ we have the following current situation:

- no sum-rate outer bound ⊂ UV-OB
 - No W required for the outer bound (!)
 - For inner bound, we know that W is critical even when $R_0 = 0$.

Synopsis

Thus when $R_0 = 0$ we have the following current situation:

- no sum-rate outer bound ⊆ UV-OB
 - No W required for the outer bound (!)
 - For inner bound, we know that W is critical even when $R_0 = 0$.

What about no sum-rate outer bound?

How does the sum-rate of BSSC compare?

Ans: It is at least 0.37251...

Synopsis

Thus when $R_0 = 0$ we have the following current situation:

- no sum-rate outer bound ⊆ UV-OB
 - No W required for the outer bound (!)
 - For inner bound, we know that W is critical even when $R_0 = 0$.

What about no sum-rate outer bound?

How does the sum-rate of BSSC compare?

Ans: It is at least 0.37251...

Belief: no sum-rate outer bound ≡ UV-OB

Reflections

All the above outer bounds are basically algebraic manipulations that

- Start from Fano's inequality
- Use Data processing inequality
- Use Csisźar sum lemma
- Identify auxiliary random variables in terms of $M_1, M_2, Y^{i-1}, Z_{i+1}^n$, etc

Reflections

All the above outer bounds are basically algebraic manipulations that

- Start from Fano's inequality
- Use Data processing inequality
- Use Csisźar sum lemma
- Identify auxiliary random variables in terms of $M_1, M_2, Y^{i-1}, Z_{i+1}^n$, etc

Remark: Irrespective of the algebra we do not seem to beat the UV-OB using above approach.

Hence, start from a clean slate.

Reflections

All the above outer bounds are basically algebraic manipulations that

- Start from Fano's inequality
- Use Data processing inequality
- Use Csisźar sum lemma
- Identify auxiliary random variables in terms of $M_1, M_2, Y^{i-1}, Z_{i+1}^n$, etc

Remark: Irrespective of the algebra we do not seem to beat the UV-OB using above approach.

Hence, start from a clean slate.

Borrows ideas and results from Images of a set by Körner-Márton ('77)

CN (CUHK) Broadcast Channel Mar 9, 2010 22 / 32

Outline of talk

- An observation and a thought experiment
- Existing outer bounds
- A comparison between them
- A different way of thinking
- What is missing...
- More examples

Images of a set ...

Given p(x), consider $\mathcal{B} \subset \mathcal{T}^{(n)}_{\epsilon}(\mathcal{X}^n)$

Image(\mathcal{B}) w.r.t channel $X \mapsto Y$ is

• $\inf \frac{1}{n} \log P(\mathcal{C}) : C \subseteq \mathcal{T}_{\epsilon}^{(n)}(\mathcal{Y}^n), P(y^n \in \mathcal{C}|x^n) > 1 - \epsilon, \forall x^n \in \mathcal{B}$

Images of a set ...

Given p(x), consider $\mathcal{B} \subset \mathcal{T}^{(n)}_{\epsilon}(\mathcal{X}^n)$

Image(\mathcal{B}) w.r.t channel $X \mapsto Y$ is

• $\inf \frac{1}{n} \log P(\mathcal{C}) : C \subseteq \mathcal{T}_{\epsilon}^{(n)}(\mathcal{Y}^n), P(y^n \in \mathcal{C}|x^n) > 1 - \epsilon, \forall x^n \in \mathcal{B}$

Remarks

- If |B| = 1 then $|C^*| \approx 2^{nH(Y|X)}$, and Image(B) = -I(X; Y)
- If \mathcal{B} is a code book of size 2^{nR} , then Image(\mathcal{B}) = R I(X; Y)
- If $\mathcal{B} \neq \emptyset$, then $-I(X; Y) \leq \text{Image}(\mathcal{B}) \leq 0$

Images of a set ...

Given p(x), consider $\mathcal{B} \subset \mathcal{T}^{(n)}_{\epsilon}(\mathcal{X}^n)$

Image(\mathcal{B}) w.r.t channel $X \mapsto Y$ is

• $\inf \frac{1}{n} \log P(\mathcal{C}) : \mathbf{C} \subseteq \mathcal{T}_{\epsilon}^{(n)}(\mathcal{Y}^n), P(\mathbf{y}^n \in \mathcal{C}|\mathbf{x}^n) > 1 - \epsilon, \forall \mathbf{x}^n \in \mathcal{B}$

Remarks

- If |B| = 1 then $|C^*| \approx 2^{nH(Y|X)}$, and Image(B) = -I(X; Y)
- If \mathcal{B} is a code book of size 2^{nR} , then $Image(\mathcal{B}) = R I(X; Y)$
- If $\mathcal{B} \neq \emptyset$, then $-I(X; Y) \leq \text{Image}(\mathcal{B}) \leq 0$

Theorem (KM-77)

If $Image(\mathcal{B})_{X\mapsto Y}\geq t$, then $Image(\mathcal{B})_{X\mapsto Z}\geq T_{Y\to Z}(t)$, where

$$T_{Y \to Z}(t) = min\{r - I(U; Z) : r - I(U; Y) \ge t, 0 \le r \le I(U; Y)\}$$

CN (CUHK) Broadcast Channel Mar 9, 2010 24/32

A reasoning

Consider a good code book (maximal error probability is small) (Willems '91)

Let
$$\mathcal{B}_i = \{x^n(i,j), j \in (1,...,2^{nR_2})\}.$$

Properties

- **1** Each \mathcal{B}_i is a 2^{nR_2} code book for receiver Z
 - Image $(\mathcal{B}_i)_{X\mapsto Z} \geq R_2 I(X; Z)$
 - Therefore, Image $(\mathcal{B}_i)_{X\mapsto Y} \geq T_{Z\to Y}(R_2 I(X;Z))$

A reasoning

Consider a good code book (maximal error probability is small) (Willems '91)

Let
$$\mathcal{B}_i = \{x^n(i,j), j \in (1,...,2^{nR_2})\}.$$

Properties

- **1** Each \mathcal{B}_i is a 2^{nR_2} code book for receiver Z
 - Image $(\mathcal{B}_i)_{X\mapsto Z} \geq R_2 I(X; Z)$
 - Therefore, Image $(\mathcal{B}_i)_{X\mapsto Y} \geq T_{Z\to Y}(R_2 I(X;Z))$
- 2 The receiver Y can distinguish between \mathcal{B}_i , i.e. Images $(\mathcal{B}_i)_{X \mapsto Y}$ are disjoint
 - Therefore $R_1 + T_{Z \to Y}(R_2 I(X; Z)) \leq 0$

A reasoning

Consider a good code book (maximal error probability is small) (Willems '91)

Let
$$\mathcal{B}_i = \{x^n(i,j), j \in (1,...,2^{nR_2})\}.$$

Properties

- **1** Each \mathcal{B}_i is a 2^{nR_2} code book for receiver Z
 - Image $(\mathcal{B}_i)_{X\mapsto Z} \geq R_2 I(X; Z)$
 - Therefore, Image $(\mathcal{B}_i)_{X\mapsto Y} \geq T_{Z\to Y}(R_2 I(X; Z))$
- ② The receiver Y can distinguish between \mathcal{B}_i , i.e. Images $(\mathcal{B}_i)_{X \mapsto Y}$ are disjoint
 - Therefore $R_1 + T_{Z \to Y}(R_2 I(X; Z)) \le 0$

Thus any good codebook must satisfy

$$R_1 + T_{Z \to Y}(R_2 - I(X; Z)) \le 0$$

 $R_2 + T_{Y \to Y}(R_1 - I(X; Y)) \le 0$ (interchange roles)

Comparison

How good is the outer bound (OB)

$$\begin{split} R_1 + T_{Z \to Y} \big(R_2 - I(X; Z) \big) &\leq 0 \\ R_2 + T_{Y \to Z} \big(R_1 - I(X; Y) \big) &\leq 0 \end{split}$$

Remarks:

ullet OB \subseteq UV-OB

Comparison

How good is the outer bound (OB)

$$\begin{split} R_1 + T_{Z \to Y} \big(R_2 - I(X; Z) \big) &\leq 0 \\ R_2 + T_{Y \to Z} \big(R_1 - I(X; Y) \big) &\leq 0 \end{split}$$

Remarks:

- OB ⊂ UV-OB
- Litmus test: Sumrate of BSSC
 - Sumrate of OB (BSSC) = 0.37255.. = Sumrate of UV-OB (BSSC)
 - Fails the litmus test ©

Comparison

How good is the outer bound (OB)

$$\begin{split} R_1 + T_{Z \to Y} \big(R_2 - I(X; Z) \big) &\leq 0 \\ R_2 + T_{Y \to Z} \big(R_1 - I(X; Y) \big) &\leq 0 \end{split}$$

Remarks:

- OB ⊂ UV-OB
- Litmus test: Sumrate of BSSC
 - Sumrate of OB (BSSC) = 0.37255.. = Sumrate of UV-OB (BSSC)
 - Fails the litmus test ©

Silver lining: There is another property that a good code book must have

A figure showing the issue

Figure: An overcounting

- We figured a possible over counting with OB
- Do we need to bother about this over lap (over-counting)
 - No degraded, less noisy, more capable (superposition coding)
 - Disjoint images in weaker receiver can be made to be disjoint in stronger receiver (without losing anything in exponent)
 - No semideterministic
 - The images on the deterministic receiver are point sets (!)

- We figured a possible over counting with OB
- Do we need to bother about this over lap (over-counting)
 - No degraded, less noisy, more capable (superposition coding)
 - Disjoint images in weaker receiver can be made to be disjoint in stronger receiver (without losing anything in exponent)
 - No semideterministic
 - The images on the deterministic receiver are point sets (!)
- Surprise: These are precisely the classes where capacity is known (!)

Therefore one needs to show either of the two:

- We need not bother with this over-counting
- This over-counting does matter and UV-OB can be made tighter.

CN (CUHK) Broadcast Channel Mar 9, 2010 28 / 32

Looked at existing bounds

- OB (with R₀) is a simple evaluatable region
- when $R_0 = 0$, UV-OB still rules!

Introduced Litmus test ©

Compare the sum rate to that of BSSC

Looked at existing bounds

- OB (with R₀) is a simple evaluatable region
- when $R_0 = 0$, UV-OB still rules!

Introduced Litmus test ©

Compare the sum rate to that of BSSC

Derived a new looking bound using a much more intuitive reasoning

- Showed that it is as good as UV-OB
- However litmus test failed
- Identified a possible over counting (weakness in outer bound)

CN (CUHK) Broadcast Channel Mar 9, 2010 29 / 32

Outline of talk

- Existing outer bounds
- A comparison between them
- A different way of thinking
- What is missing...
- More examples

BISO broadcast channels

BISO: (Binary-Input Symmetric-Output)

A channel is BISO if the channel transition matrix satisfies

$$P(Y = k | X = 0) = P(Y = -k | X = 1), \forall k$$

Examples: BSC, BEC

BISO broadcast channels

BISO: (Binary-Input Symmetric-Output)

A channel is BISO if the channel transition matrix satisfies

$$P(Y = k | X = 0) = P(Y = -k | X = 1), \forall k$$

Examples: BSC, BEC

[Geng-Nair-Shamai-Wang '10]

Consider a BC where $X \mapsto Y_1, X \mapsto Y_2$ are BISO channels

Then the following are equivalent:

• Neither is more capable than the other, i.e. $\exists p_1, p_2$ s.t

$$I(X; Y_1) > I(X; Y_2)|_{P(X=0)=p_1}, \quad I(X; Y_1) < I(X; Y_2)|_{P(X=0)=p_2}.$$

Marton's inner bound

UV-OB

There are BISO broadcast channels with $|Y| \ge 4$ which are not more-capable comparable

CN (CUHK) Broadcast Channel Mar 9, 2010 31 / 32

Thank You

More on Thursday