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Some preliminaries

Recall: Superposition coding can be used to achieve the union of rate
pairs (R1, R2) satisfying

R1 ≤ I(U; Y1)

R1 + R2 ≤ I(U; Y1) + I(X ; Y2|U)

R1 + R2 ≤ I(X ; Y2)

over all p(u, x).

Korner-Marton and El Gamal established that the union of rate pairs
(R1, R2) satisfying

R1 ≤ I(U; Y1)

R1 + R2 ≤ I(U; Y1) + I(X ; Y2|U)

R2 ≤ I(X ; Y2)

over all p(u, x) forms an outer bound to the capacity region.
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A thought experiment

Observation 1: The above inner and outer bounds seem great for a
degraded scenario (where Y1 is the weaker receiver).

Observation 2: All the capacity regions are established by showing that
these two regions coincide.

Question: Are the two regions (inner and outer bounds) the same or
are the different?
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A thought experiment

Observation 1: The above inner and outer bounds seem great for a
degraded scenario (where Y1 is the weaker receiver).

Observation 2: All the capacity regions are established by showing that
these two regions coincide.

Question: Are the two regions (inner and outer bounds) the same or
are the different?

Using Observation 1, a natural antipodal setting seems to be when
there is no degradedness in the picture
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Non-degradable BC

A non-degradable broadcast channel is one where there does not exist
a non-trivial decomposition of the form

X → X̃ → Y1, Y2

If

P : X 7→ Y1

Q : X 7→ Y2

then there does not exists M, a non-trivial |X | × |X | stochastic matrix
such that

P = P1 × M; Q = Q1 × M
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BSSC
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Non-degradable BC

A non-degradable broadcast channel is one where there does not exist
a non-trivial decomposition of the form

X → X̃ → Y1, Y2

If

P : X 7→ Y1

Q : X 7→ Y2

then there does not exists M, a non-trivial |X | × |X | stochastic matrix
such that

P = P1 × M; Q = Q1 × M

The simplest example of a non-degradable broadcast channel is the
BSSC

Thus intuitively, BSSC is a perfect channel to compare the bounds
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The binary skew-symmetric broadcast channel
(BSSC)
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Figure: Binary Skew Symmetric Channel

CN (CUHK) Broadcast Channel Mar 9, 2010 6 / 32



Outline of talk

An observation and a thought experiment

Existing bounds

A comparison between them

A different way of thinking

What is missing...

More examples

CN (CUHK) Broadcast Channel Mar 9, 2010 7 / 32



An achievable region (Marton ’79)

Most of this talk, assume R0 = 0 (no common message)

Recall that the following rates are achievable

R1 ≤ I(U, W ; Y1)

R2 ≤ I(V , W ; Y2)

R1 + R2 ≤ min{I(W ; Y1), I(W ; Y2)} + I(U; Y1|W )

+ I(V ; Y2|W ) − I(U; V |W )
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An achievable region (Marton ’79)

Most of this talk, assume R0 = 0 (no common message)

Recall that the following rates are achievable

R1 ≤ I(U, W ; Y1)

R2 ≤ I(V , W ; Y2)

R1 + R2 ≤ min{I(W ; Y1), I(W ; Y2)} + I(U; Y1|W )

+ I(V ; Y2|W ) − I(U; V |W )

This is the best achievable region known to-date

Not even a special carefully constructed channel where one can
beat this

Obviously, no proof of optimality
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Outer bound: El Gamal (Asilomar ’76, IT ’79)

Paper: Capacity of a class of broadcast channels (more capable)

The union of rate pairs (R1, R2) satisfying

R1 ≤ I(U; Y1)

R2 ≤ I(V ; Y2)

R1 + R2 ≤ I(U; Y1) + I(X ; Y2|U)

R1 + R2 ≤ I(V ; Y2) + I(X ; Y1|V )

over all p(u, v , x) constitutes an outer bound.
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Outer bound: El Gamal (Asilomar ’76, IT ’79)

Paper: Capacity of a class of broadcast channels (more capable)

The union of rate pairs (R1, R2) satisfying

R1 ≤ I(U; Y1)

R2 ≤ I(V ; Y2)

R1 + R2 ≤ I(U; Y1) + I(X ; Y2|U)

R1 + R2 ≤ I(V ; Y2) + I(X ; Y1|V )

over all p(u, v , x) constitutes an outer bound.

Remark: Because this bound was not explicitly stated, this was not
well-known (registered)

Call this bound the UV-OB.
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Körner-Márton (IT ’79)

Paper: An achievable rate region for 2-receiver discrete memoryless
broadcast channels (Márton)

The union of rate pairs (R1, R2) satisfying

R1 ≤ I(X ; Y1)

R2 ≤ I(V ; Y2)

R1 + R2 ≤ I(V ; Y2) + I(X ; Y1|V )

over all p(v , x) constitutes an outer bound.
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Körner-Márton (IT ’79)

Paper: An achievable rate region for 2-receiver discrete memoryless
broadcast channels (Márton)

The union of rate pairs (R1, R2) satisfying

R1 ≤ I(X ; Y1)

R2 ≤ I(V ; Y2)

R1 + R2 ≤ I(V ; Y2) + I(X ; Y1|V )

over all p(v , x) constitutes an outer bound.

Remark: This was used in establishing the capacity of the
semi-deterministic broadcast channel
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Körner-Márton outer bound

Let Ra be the union of rate pairs (R1, R2) satisfying

R1 ≤ I(X ; Y1)

R2 ≤ I(V ; Y2)

R1 + R2 ≤ I(V ; Y2) + I(X ; Y1|V )

over all p(v , x).

Let Rb be the union of rate pairs (R1, R2) satisfying

R1 ≤ I(U; Y1)

R2 ≤ I(X ; Y2)

R1 + R2 ≤ I(U; Y1) + I(X ; Y2|U)

over all p(v , x).
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Körner-Márton outer bound

Let Ra be the union of rate pairs (R1, R2) satisfying

R1 ≤ I(X ; Y1)

R2 ≤ I(V ; Y2)

R1 + R2 ≤ I(V ; Y2) + I(X ; Y1|V )

over all p(v , x).

Let Rb be the union of rate pairs (R1, R2) satisfying

R1 ≤ I(U; Y1)

R2 ≤ I(X ; Y2)

R1 + R2 ≤ I(U; Y1) + I(X ; Y2|U)

over all p(v , x).
The region Ra ∩Rb became known as the Körner-Márton outer bound.
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Remarks

The following comparisons are immediate:

UV-OB ⊆ KM-OB

UV-OB ⊆ Sato’s outer bound
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Remarks

The following comparisons are immediate:

UV-OB ⊆ KM-OB

UV-OB ⊆ Sato’s outer bound

Further KM-OB matches the capacity region in all special cases where
capacity was established.
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Nair-El Gamal ’06

The union of rate pairs (R1, R2) satisfying

R1 ≤ I(U, W ; Y1)

R2 ≤ I(V , W ; Y2)

R1 + R2 ≤ I(U, W ; Y1) + I(V ; Y2|U, W )

R1 + R2 ≤ I(V , W ; Y2) + I(U; Y1|V , W )

over all p(u)p(v)p(w , x |u, v) constitutes an outer bound.
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over all p(u)p(v)p(w , x |u, v) constitutes an outer bound.

Also showed that

this bound ⊆ UV-OB ⊂ KM-OB

BSSC: UV-OB ⊂ KM-OB (Surprise (,))
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Nair-El Gamal ’06

The union of rate pairs (R1, R2) satisfying

R1 ≤ I(U, W ; Y1)

R2 ≤ I(V , W ; Y2)

R1 + R2 ≤ I(U, W ; Y1) + I(V ; Y2|U, W )

R1 + R2 ≤ I(V , W ; Y2) + I(U; Y1|V , W )

over all p(u)p(v)p(w , x |u, v) constitutes an outer bound.

Also showed that

this bound ⊆ UV-OB ⊂ KM-OB

BSSC: UV-OB ⊂ KM-OB (Surprise (,))

However Nair-Wang (’08) showed that the above bound ≡ UV-OB
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Comparing inner and outer bounds

KM-OB = Marton Inner Bound (MIB) in all special cases where
capacity was established.

UV-OB ⊂ KM-OB
This implies that KM-OB 6= UV-OB
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Comparing inner and outer bounds

KM-OB = Marton Inner Bound (MIB) in all special cases where
capacity was established.

UV-OB ⊂ KM-OB
This implies that KM-OB 6= UV-OB

Is it true that UV − OB = MIB?

To, answer this we again look at the BSSC
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BSSC: Comparing the bounds

Conjecture: [N-Wang ’08] For all (U, V ) → X → (Y1, Y2)

I(U; Y1) + I(V ; Y2) − I(U; V ) ≤ max{I(X ; Y1), I(X ; Y2)}

If the conjecture is true
Maximum R1 + R2 achievable by Märton’s strategy is 0.3616..
Maximum R1 + R2 contained in the outer bound is 0.3725.. (N-EG
’07)
Thus inner and outer bound regions differ (!)
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Conjecture: [N-Wang ’08] For all (U, V ) → X → (Y1, Y2)

I(U; Y1) + I(V ; Y2) − I(U; V ) ≤ max{I(X ; Y1), I(X ; Y2)}

If the conjecture is true
Maximum R1 + R2 achievable by Märton’s strategy is 0.3616..
Maximum R1 + R2 contained in the outer bound is 0.3725.. (N-EG
’07)
Thus inner and outer bound regions differ (!)

The conjecture is true when P(X = 0) ∈ [0,
1
5 ] ∪ [4

5 , 1]

Recall: No cardinality bounds on auxiliary random variables
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BSSC: Comparing the bounds

Conjecture: [N-Wang ’08] For all (U, V ) → X → (Y1, Y2)

I(U; Y1) + I(V ; Y2) − I(U; V ) ≤ max{I(X ; Y1), I(X ; Y2)}

If the conjecture is true
Maximum R1 + R2 achievable by Märton’s strategy is 0.3616..
Maximum R1 + R2 contained in the outer bound is 0.3725.. (N-EG
’07)
Thus inner and outer bound regions differ (!)

The conjecture is true when P(X = 0) ∈ [0,
1
5 ] ∪ [4

5 , 1]

Recall: No cardinality bounds on auxiliary random variables

[Gohari-Anantharam ’09]
Proved: sufficient to consider |U| ≤ |X |, |V| ≤ |X |, X = f (U, V ) to
establish conjecture
Proved: inner and outer bounds differ for BSSC
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Sum-rate bounds for BSSC

Extending the perturbation method [Jog-Nair ’09] established the
conjecture, i.e.

For all p(u, v , x), s/t (U, V ) → X → (Y1, Y2)

I(U; Y1) + I(V ; Y2) − I(U; V ) ≤ max{I(X ; Y1), I(X ; Y2)}

This implies that sum-rate bounds of BSSC are:
Marton’s inner bound: 0.3616...
UV-OB: 0.37255...
KM-OB: 0.3743...
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Sum-rate bounds for BSSC

Extending the perturbation method [Jog-Nair ’09] established the
conjecture, i.e.

For all p(u, v , x), s/t (U, V ) → X → (Y1, Y2)

I(U; Y1) + I(V ; Y2) − I(U; V ) ≤ max{I(X ; Y1), I(X ; Y2)}

This implies that sum-rate bounds of BSSC are:
Marton’s inner bound: 0.3616...
UV-OB: 0.37255...
KM-OB: 0.3743...

Aside: Generalizing the arguments of [Jog-Nair ’09], it is known that for
all p(u, v , x , y1, y2), s/t (U, V ) → X → (Y1, Y2)

I(U; Y1) + I(V ; Y2) − I(U; V ) ≤ max{I(X ; Y1), I(X ; Y2)}

as long as |X | = 2
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Open question

What is the optimal sum-rate of BSSC.

Answering this will determine whether:

Which bound/s are loose

Possibly require new ideas
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Other bounds

Liang, Liang-Kramer had concurrently developed similar outer
bounds

Not known if they were better than existing bounds (e.g., KM-OB)

Liang, Kramer, Shamai developed the New-Jersey outer bound
(’08)

Nair developed another outer bound (’08). No-sum-rate outer
bound

The following relations were established:

No sum-rate outer bound ⊆ New-Jersey outer bound

New-Jersey outer bound ⊆
(

outer bound (Nair-El Gamal) ∩

outer-bound(Liang, Liang-Kramer)
)

Remark: Equivalences or strict inclusions are not established
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New-Jersey outer bound (LKS ’08)

The union of rate triples (R0, R1, R2) satisfying

R0 ≤ min{I(T ; Y |W1), I(T ; Z |W2)}

R1 ≤ I(U; Y |W1)

R2 ≤ I(V ; Z |W2)

R0 + R1 ≤ I(T , U; Y |W1)

R0 + R1 ≤ I(U; Y |T , W1, W2) + I(T , W1; Z |W2)

R0 + R2 ≤ I(T , V ; Z |W2)

R0 + R2 ≤ I(V ; Z |T , W1, W2) + I(T , W2; Y |W1)

R0 + R1 + R2 ≤ I(U; Y |T , V , W1, W2) + I(T , V , W1; Z |W2)

R0 + R1 + R2 ≤ I(V ; Z |T , U, W1, W2) + I(T , U, W2; Y |W1)

R0 + R1 + R2 ≤ I(U; Y |T , V , W1, W2) + I(T , W1, W2; Y ) + I(V ; Z |T , W1, W2)

R0 + R1 + R2 ≤ I(V ; Z |T , U, W1, W2) + I(T , W1, W2; Z ) + I(U; Y |T , W1, W2)

for some p(u)p(v)p(t)p(w1, w2|u, v , t)p(x |u, v , t , w1 , w2)p(y , z|x)
constitutes an outer bound.
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An equivalent evaluatable region

The union of rate triples (R0, R1, R2) satisfying

R0 ≤ min{I(W ; Y ), I(W ; Z )}

R0 + R1 ≤ I(U; Y |W ) + min{I(W ; Y ), I(W ; Z )}

R0 + R2 ≤ I(V ; Z |W ) + min{I(W ; Y ), I(W ; Z )}

R0 + R1 + R2 ≤ min{I(W ; Y ), I(W ; Z )} + I(U; Y |W ) + I(X ; Z |U, W )

R0 + R1 + R2 ≤ min{I(W ; Y ), I(W ; Z )} + I(V ; Z |W ) + I(X ; Y |V , W )

for some p(u, v , w)p(y , z|x) is equivalent to the NJ-outer bound.

Proof idea: same as Nair-Wang (’08)

Suffices to consider |W | ≤ |X | + 7; |U|, |V | ≤ |X | + 2
If one is interested in sumrate

suffices to consider |U|, |V | ≤ |X |; W = ∅.

When R0 = 0 this region is ≡ UV-OB
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Synopsis

Thus when R0 = 0 we have the following current situation:
no sum-rate outer bound ⊆ UV-OB

No W required for the outer bound (!)
For inner bound, we know that W is critical even when R0 = 0.
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Synopsis

Thus when R0 = 0 we have the following current situation:
no sum-rate outer bound ⊆ UV-OB

No W required for the outer bound (!)
For inner bound, we know that W is critical even when R0 = 0.

What about no sum-rate outer bound?

How does the sum-rate of BSSC compare?

Ans: It is at least 0.37251...
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Synopsis

Thus when R0 = 0 we have the following current situation:
no sum-rate outer bound ⊆ UV-OB

No W required for the outer bound (!)
For inner bound, we know that W is critical even when R0 = 0.

What about no sum-rate outer bound?

How does the sum-rate of BSSC compare?

Ans: It is at least 0.37251...

Belief: no sum-rate outer bound ≡ UV-OB
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Reflections

All the above outer bounds are basically algebraic manipulations that

Start from Fano’s inequality

Use Data processing inequality

Use Csisźar sum lemma

Identify auxiliary random variables in terms of
M1, M2, Y i−1, Z n

i+1, etc
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Reflections

All the above outer bounds are basically algebraic manipulations that

Start from Fano’s inequality

Use Data processing inequality

Use Csisźar sum lemma

Identify auxiliary random variables in terms of
M1, M2, Y i−1, Z n

i+1, etc

Remark: Irrespective of the algebra we do not seem to beat the UV-OB
using above approach.

Hence, start from a clean slate.

CN (CUHK) Broadcast Channel Mar 9, 2010 22 / 32



Reflections

All the above outer bounds are basically algebraic manipulations that

Start from Fano’s inequality

Use Data processing inequality

Use Csisźar sum lemma

Identify auxiliary random variables in terms of
M1, M2, Y i−1, Z n

i+1, etc

Remark: Irrespective of the algebra we do not seem to beat the UV-OB
using above approach.

Hence, start from a clean slate.

Borrows ideas and results from Images of a set by Körner-Márton (’77)
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Images of a set ...

Given p(x), consider B ⊂ T
(n)

ǫ (X n)

Image(B) w.r.t channel X 7→ Y is

inf 1
n log P(C) : C ⊆ T

(n)
ǫ (Yn), P(yn ∈ C|xn) > 1 − ǫ,∀xn ∈ B
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Images of a set ...

Given p(x), consider B ⊂ T
(n)

ǫ (X n)

Image(B) w.r.t channel X 7→ Y is

inf 1
n log P(C) : C ⊆ T

(n)
ǫ (Yn), P(yn ∈ C|xn) > 1 − ǫ,∀xn ∈ B

Remarks

If |B| = 1 then |C∗| ≈ 2nH(Y |X), and Image(B) = −I(X ; Y )

If B is a code book of size 2nR, then Image(B) = R − I(X ; Y )

If B 6= ∅, then −I(X ; Y ) ≤ Image(B) ≤ 0
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Images of a set ...

Given p(x), consider B ⊂ T
(n)

ǫ (X n)

Image(B) w.r.t channel X 7→ Y is

inf 1
n log P(C) : C ⊆ T

(n)
ǫ (Yn), P(yn ∈ C|xn) > 1 − ǫ,∀xn ∈ B

Remarks

If |B| = 1 then |C∗| ≈ 2nH(Y |X), and Image(B) = −I(X ; Y )

If B is a code book of size 2nR, then Image(B) = R − I(X ; Y )

If B 6= ∅, then −I(X ; Y ) ≤ Image(B) ≤ 0

Theorem (KM-77)

If Image(B)X 7→Y ≥ t , then Image(B)X 7→Z ≥ TY→Z (t), where

TY→Z (t) = min{r − I(U; Z ) : r − I(U; Y ) ≥ t , 0 ≤ r ≤ I(U; Y )}
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A reasoning

Consider a good code book (maximal error probability is small)
(Willems ’91)

Let Bi = {xn(i , j), j ∈ (1, ..., 2nR2)}.

Properties
1 Each Bi is a 2nR2 code book for receiver Z

Image (Bi)X 7→Z ≥ R2 − I(X ; Z )
Therefore, Image (Bi)X 7→Y ≥ TZ→Y

(

R2 − I(X ; Z )
)
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Properties
1 Each Bi is a 2nR2 code book for receiver Z

Image (Bi)X 7→Z ≥ R2 − I(X ; Z )
Therefore, Image (Bi)X 7→Y ≥ TZ→Y

(

R2 − I(X ; Z )
)

2 The receiver Y can distinguish between Bi , i.e. Images (Bi)X 7→Y
are disjoint

Therefore R1 + TZ→Y
(

R2 − I(X ; Z )
)

≤ 0
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A reasoning

Consider a good code book (maximal error probability is small)
(Willems ’91)

Let Bi = {xn(i , j), j ∈ (1, ..., 2nR2)}.

Properties
1 Each Bi is a 2nR2 code book for receiver Z

Image (Bi)X 7→Z ≥ R2 − I(X ; Z )
Therefore, Image (Bi)X 7→Y ≥ TZ→Y

(

R2 − I(X ; Z )
)

2 The receiver Y can distinguish between Bi , i.e. Images (Bi)X 7→Y
are disjoint

Therefore R1 + TZ→Y
(

R2 − I(X ; Z )
)

≤ 0

Thus any good codebook must satisfy

R1 + TZ→Y
(

R2 − I(X ; Z )
)

≤ 0

R2 + TY→Y
(

R1 − I(X ; Y )
)

≤ 0 (interchange roles)
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Comparison

How good is the outer bound (OB)

R1 + TZ→Y
(

R2 − I(X ; Z )
)

≤ 0

R2 + TY→Z
(

R1 − I(X ; Y )
)

≤ 0

Remarks:

OB ⊆ UV-OB
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Comparison

How good is the outer bound (OB)

R1 + TZ→Y
(

R2 − I(X ; Z )
)

≤ 0

R2 + TY→Z
(

R1 − I(X ; Y )
)

≤ 0

Remarks:

OB ⊆ UV-OB
Litmus test: Sumrate of BSSC

Sumrate of OB (BSSC) = 0.37255.. = Sumrate of UV-OB (BSSC)
Fails the litmus test ,
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Comparison

How good is the outer bound (OB)

R1 + TZ→Y
(

R2 − I(X ; Z )
)

≤ 0

R2 + TY→Z
(

R1 − I(X ; Y )
)

≤ 0

Remarks:

OB ⊆ UV-OB
Litmus test: Sumrate of BSSC

Sumrate of OB (BSSC) = 0.37255.. = Sumrate of UV-OB (BSSC)
Fails the litmus test ,

Silver lining: There is another property that a good code book must
have
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A figure showing the issue

n

n

Z

Y

Figure: An overcounting
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Remarks

We figured a possible over counting with OB
Do we need to bother about this over lap (over-counting)

No - degraded, less noisy, more capable (superposition coding)
Disjoint images in weaker receiver can be made to be disjoint in
stronger receiver (without losing anything in exponent)

No - semideterministic
The images on the deterministic receiver are point sets (!)
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Remarks

We figured a possible over counting with OB
Do we need to bother about this over lap (over-counting)

No - degraded, less noisy, more capable (superposition coding)
Disjoint images in weaker receiver can be made to be disjoint in
stronger receiver (without losing anything in exponent)

No - semideterministic
The images on the deterministic receiver are point sets (!)

Surprise: These are precisely the classes where capacity is
known (!)

Therefore one needs to show either of the two:

We need not bother with this over-counting

This over-counting does matter and UV-OB can be made tighter.

CN (CUHK) Broadcast Channel Mar 9, 2010 28 / 32



Remarks

Looked at existing bounds

OB (with R0) is a simple evaluatable region

when R0 = 0, UV-OB still rules !

Introduced Litmus test ,

Compare the sum rate to that of BSSC
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Remarks

Looked at existing bounds

OB (with R0) is a simple evaluatable region

when R0 = 0, UV-OB still rules !

Introduced Litmus test ,

Compare the sum rate to that of BSSC

Derived a new looking bound using a much more intuitive reasoning

Showed that it is as good as UV-OB

However litmus test failed

Identified a possible over counting (weakness in outer bound)
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Outline of talk

Existing outer bounds

A comparison between them

A different way of thinking

What is missing...

More examples
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BISO broadcast channels

BISO: (Binary-Input Symmetric-Output)
A channel is BISO if the channel transition matrix satisfies

P(Y = k |X = 0) = P(Y = −k |X = 1),∀k

Examples: BSC, BEC
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BISO broadcast channels

BISO: (Binary-Input Symmetric-Output)
A channel is BISO if the channel transition matrix satisfies

P(Y = k |X = 0) = P(Y = −k |X = 1),∀k

Examples: BSC, BEC

[Geng-Nair-Shamai-Wang ’10]

Consider a BC where X 7→ Y1, X 7→ Y2 are BISO channels

Then the following are equivalent:
Neither is more capable than the other, i.e. ∃p1, p2 s.t

I(X ; Y1) > I(X ; Y2)|P(X=0)=p1
, I(X ; Y1) < I(X ; Y2)|P(X=0)=p2

.

Marton’s inner bound ⊂ UV-OB

There are BISO broadcast channels with |Y | ≥ 4 which are not
more-capable comparable
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Thank You

More on Thursday
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